ar X iv : s ol v - in t / 9 70 70 14 v 1 2 7 Ju l 1 99 7 The constrained modified KP hierarchy and the generalized Miura transformations

نویسنده

  • Ming-Hsien Tu
چکیده

In this letter, we consider the second Hamiltonian structure of the constrained modified KP hierarchy. After mapping the Lax operator to a pure differential operator the second structure becomes the sum of the second and the third Gelfand-Dickey brackets defined by this differential operator. We simplify this Hamiltonian structure by factorizing the Lax operator into linear terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

v - in t / 9 90 70 19 v 1 2 2 Ju l 1 99 9 Miura Map between Lattice KP and its Modification is Canonical

We consider the Miura map between the lattice KP hierarchy and the lattice modified KP hierarchy and prove that the map is canonical not only between the first Hamiltonian structures, but also between the second Hamiltonian structures.

متن کامل

ar X iv : s ol v - in t / 9 70 70 08 v 1 1 4 Ju l 1 99 7 Functional representation of the Ablowitz - Ladik hierarchy .

The Ablowitz-Ladik hierarchy (ALH) is considered in the framework of the inverse scattering approach. After establishing the structure of solutions of the auxiliary linear problems , the ALH, which has been originally introduced as an infinite system of difference-differential equations is presented as a finite system of difference-functional equations. The representation obtained, when rewritt...

متن کامل

ar X iv : s ol v - in t / 9 70 30 03 v 1 6 M ar 1 99 7 ON THE POINT TRANSFORMATIONS FOR THE SECOND ORDER DIFFERENTIAL EQUATIONS

Point transformations for the ordinary differential equations of the form y ′′ = P (x, y) + 3 Q(x, y) y ′ + 3 R(x, y) (y ′) 2 + S(x, y) (y ′) 3 are considered. Some classical results are resumed. Solution for the equivalence problem for the equations of general position is described.

متن کامل

ar X iv : s ol v - in t / 9 90 50 05 v 2 1 7 M ay 1 99 9 The KP Hierarchy in Miwa coordinates ∗

A systematic reformulation of the KP hierarchy by using continuous Miwa variables is presented. Basic quantities and relations are defined and determinantal expressions for Fay’s identities are obtained. It is shown that in terms of these variables the KP hierarchy gives rise to a Darboux system describing an infinite-dimensional conjugate net.

متن کامل

ar X iv : s ol v - in t / 9 70 40 03 v 1 2 A pr 1 99 7 Convergent Normal Forms of Symmetric Dynamical Systems

It is shown that the presence of Lie-point-symmetries of (non-Hamiltonian) dynamical systems can ensure the convergence of the coordinate transformations which take the dynamical sytem (or vector field) into Poincaré-Dulac normal form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008